Mind-machine interface could lead to new life-changing technologies for millions of people
College Park, Md. - "Brain cap" technology being developed at the University of Maryland School of Public Health allows users to turn their thoughts into motion. Associate Professor of Kinesiology José 'Pepe' L. Contreras-Vidal and his team have created a non-invasive, sensor-lined cap with neural interface software that soon could be used to control computers, robotic prosthetic limbs, motorized wheelchairs and even digital avatars.
"We are on track to develop, test and make available to the public- within the next few years - a safe, reliable, noninvasive brain computer interface that can bring life-changing technology to millions of people whose ability to move has been diminished due to paralysis, stroke or other injury or illness," said Contreras-Vidal.
The potential and rapid progression of the UMD brain cap technology can be seen in a host of recent developments, including a just published study in the Journal of Neurophysiology, new grants from the National Science Foundation (NSF) and National Institutes of Health, and a growing list of partners that includes the University of Maryland School of Medicine, the Veterans Affairs Maryland Health Care System, the Johns Hopkins University Applied Physics Laboratory, Rice University and Walter Reed Army Medical Center's Integrated Department of Orthopaedics & Rehabilitation.
"We are doing something that few previously thought was possible," said Contreras-Vidal, who is also an affiliate professor in Maryland's Fischell Department of Bioengineering and the university's Neuroscience and Cognitive Science Program. "We use EEG [electroencephalography] to non-invasively read brain waves and translate them into movement commands for computers and other devices.
Peer Reviewed
Contreras-Vidal and his team have published three major papers on their technology over the past 18 months, the latest a just released study in the Journal of Neurophysiology in which they successfully used EEG brain signals to reconstruct the complex 3-D movements of the ankle, knee and hip joints during human treadmill walking. In two earlier studies they showed (1) similar results for 3-D hand movement and (2) that subjects wearing the brain cap could control a computer cursor with their thoughts.
Alessandro Presacco, a second-year doctoral student in Contreras-Vidal's Neural Engineering and Smart Prosthetics Lab, Contreras-Vidal and co-authors write that their Journal of Neurophysiology study indicated "that EEG signals can be used to study the cortical dynamics of walking and to develop brain-machine interfaces aimed at restoring human gait function."
There are other brain computer interface technologies under development, but Contreras-Vidal notes that these competing technologies are either very invasive, requiring electrodes to be implanted directly in the brain, or, if noninvasive, require much more training to use than does UMD's EEG-based, brain cap technology.
Read the complete news release UMD Brain Cap Technology Turns Thought into Motion
College Park, Md. - "Brain cap" technology being developed at the University of Maryland School of Public Health allows users to turn their thoughts into motion. Associate Professor of Kinesiology José 'Pepe' L. Contreras-Vidal and his team have created a non-invasive, sensor-lined cap with neural interface software that soon could be used to control computers, robotic prosthetic limbs, motorized wheelchairs and even digital avatars.
"We are on track to develop, test and make available to the public- within the next few years - a safe, reliable, noninvasive brain computer interface that can bring life-changing technology to millions of people whose ability to move has been diminished due to paralysis, stroke or other injury or illness," said Contreras-Vidal.
The potential and rapid progression of the UMD brain cap technology can be seen in a host of recent developments, including a just published study in the Journal of Neurophysiology, new grants from the National Science Foundation (NSF) and National Institutes of Health, and a growing list of partners that includes the University of Maryland School of Medicine, the Veterans Affairs Maryland Health Care System, the Johns Hopkins University Applied Physics Laboratory, Rice University and Walter Reed Army Medical Center's Integrated Department of Orthopaedics & Rehabilitation.
"We are doing something that few previously thought was possible," said Contreras-Vidal, who is also an affiliate professor in Maryland's Fischell Department of Bioengineering and the university's Neuroscience and Cognitive Science Program. "We use EEG [electroencephalography] to non-invasively read brain waves and translate them into movement commands for computers and other devices.
Peer Reviewed
Contreras-Vidal and his team have published three major papers on their technology over the past 18 months, the latest a just released study in the Journal of Neurophysiology in which they successfully used EEG brain signals to reconstruct the complex 3-D movements of the ankle, knee and hip joints during human treadmill walking. In two earlier studies they showed (1) similar results for 3-D hand movement and (2) that subjects wearing the brain cap could control a computer cursor with their thoughts.
Alessandro Presacco, a second-year doctoral student in Contreras-Vidal's Neural Engineering and Smart Prosthetics Lab, Contreras-Vidal and co-authors write that their Journal of Neurophysiology study indicated "that EEG signals can be used to study the cortical dynamics of walking and to develop brain-machine interfaces aimed at restoring human gait function."
There are other brain computer interface technologies under development, but Contreras-Vidal notes that these competing technologies are either very invasive, requiring electrodes to be implanted directly in the brain, or, if noninvasive, require much more training to use than does UMD's EEG-based, brain cap technology.
Read the complete news release UMD Brain Cap Technology Turns Thought into Motion
No comments:
Post a Comment